You are here: Tags / google analytics
For the longest time, Google has been working towards consolidation of their products to build a unified tagging platform. Products that are instrumented (or associated) with “tags” would fall under this umbrella. These comprise tools like Google Tag Manager, Google Ads, Google Optimize, and, of course, Google Analytics. If you’ve been peeking under the hood, you might have noticed how all the tools listed above already run through the gtag.js library.

Continue reading

One of the key skills for anyone working with web analytics and tag management is understanding how to identify where things went wrong, why they went wrong, and ideally how to fix them. There are plenty of excellent browser extensions for helping you debug, and we’ll discuss these in the guide, too. But most of all we’re going to use browsers’ own developer tools, as they are always the best source of truth for anything that happens within the browser window.

Continue reading

Not too long ago, Google announced a new consent mode for Google tags. It allows you to build a mechanism where Google’s tags parse, react, and respond to the consent status of your site visitors. Consent Mode with a custom Google Tag Manager template In short, consent mode is a beta feature, which lets you determine whether or not Google’s advertising tags (Ads and Floodlight) and analytics tags (Universal Analytics, App + Web) can utilize browser storage when sending pings to Google’s servers.

Continue reading

With the enforcement of SameSite settings in the latest versions of Google Chrome, it’s become a mad scramble to get cookies working across first-party and third-party contexts. I’ve covered this phenomenon before in my SameSite article, as well as in my guide for setting up cookieless tracking for iframes. Recently, Google Analytics updated its libraries (App+Web, gtag.js, and analytics.js) with a new setting: cookieFlags (analytics.js) or cookie_flags (App+Web and gtag.js).

Continue reading

One of the hard-and-fast rules in Google Analytics is that once hits have been collected and processed into your data properties, those hits are untouchable. This means that if you mistakenly collect duplicate or incorrect transactions, PII traffic, or referral spam, for example, it’s extremely difficult, if not downright impossible, to purge or change this data in Google Analytics. Another staple of Google Analytics’ strict schema is that displacing hits in time is also very difficult.

Continue reading

In Google Analytics: App + Web, you collect events. One event differs from another event by the name it uses. An event with the name page_view is different from, say, an event with the name file_download. This is all run-of-the-mill stuff. You know this. However, the fundamental change that App + Web introduces, when compared to Universal Analytics, is how event parameters are collected and processed. This gets more complicated than it should be.

Continue reading

There are lots of different readability formulas out there, which seek to provide an index on how readable any given excerpt of text is. Typically, these formulas output a grade-level score, which indicates, roughly, the level of education required to read the text excerpt with ease. Any “quality index” that seeks to reduce the complexity of something as multi-faceted as reading should be subject to scrutiny. This is true for Bounce Rate, this is true for Time On Page, and this is true for a readability score.

Continue reading

Author's picture

Simo Ahava

Husband | Father | Analytics developer
simo (at) simoahava.com

Senior Data Advocate at Reaktor

Finland